

Design Considerations for Embedded Sensor Solutions in Industrial Applications

August 2008

Renesas Technology Europe

02/09/2008

Key Requirements and Use Cases

System Concept

- Separate measurement function from other intelligence to simpliv certification process?
- Separate communication interface from other intelligence for modularity?
- Or integrate everything to achieve small form factor?
- Display options:
 - Display has built-in display driver
 - MCU has built-in display driver
 - LCD SW driver, TFT Direct Drive
- Non volatile memory for data storage (data flash) and adaptivity (firmware update)
- Power supply
 - Uncritical: Line powered or laptop size battery
 - Medium: re-chargeable batteries , medium lifetime
 - High: 10~20 years of lifetime (Calculation of runtime, wake-up time, sleep time needed)
- Increase reliability and safety by
 - self-test SW or HW (according to e.g. IEC60730)
 - redundant MCU concept (watchdog MCU, asymmetric/symmetric dualcore, etc.)
- Availability of development tools, application notes and sample code (as close as possible to real application) to improve time-to-market
- Mechanical aspects (Industrial housing, etc.)

MCU Selection Criteria for Industrial Sensor Applications

✓ Low Power Features

- ✓ Stop mode (wake up by external event)
- ✓ Low voltage operation (1,8V)
- ✓ Subclock
- ✓ Real Time Clock

✓ Reliability Features

- ✓ Power-On-Reset
- ✓ Low Voltage Detection (2 steps)
- ✓ On Chip Oscillator (low speed / high speed)
- ✓ Oscillator stop detection
- ✓ Watchdog
- ✓ Protected Registers

✓ Memory features

- ✓ Scalable memory variants
- ✓ Flash memory (BGO programming mode, 20 years data retention)
- ✓ Data Flash
- ✓ Protection

✓ Sensor Features

✓ ADC, External Interrupts, Event Counter, Input Capture, Wake-Up ✓ AD trigger by any external or interrupt source

✓ Actor Features

✓ DAC, PWM, Output Compare

✓ Performace

✓ Enough for data pre-processing, protocol handling, user interface ✓ DMA or DTC (Data Transfer Controller)

✓ Supplier

- ✓ Qualified for Industrial / Automotive applications
- ✓ Excellent quality record
- ✓ Long term supply guarantee
- ✓ toolchain
- ✓ support

MCU proposals for intelligent sensors

20pin SSOP 4.4 x 6.5x 1.45mm 0.65mm pitch	28pin QFN 5×5×0.75m 0.5mm pitch		64pin LGA 6 x 6 x 1.05 mm 0.65mm pitch	
Туре	R8C/18 R8C/19 R8C/1A R8C/1B	R8C/24 R8C/25 R8C/2A R8C/2B	H8/38602RF	H8/38076RF
Package	20pin SSOP 4,4mmx6,5mm 0,65mm pitch or 28pin QFN 5x5x0,75mm 0,5mm pitch	64pin LGA 6mmx6mm 0,66mm pitch	32pin QFN 5mmx6mm 0,5mm pitch	TLP85 7mmx7mm 0,65mm pitch
Performance	16bit CPU 20MHz	16 bit CPU 40MHz	16 bit CPU 10MHz	16bit CPU 10MHz
Low Power Modes	Stop Mode: 0,8µA Low Speed-OCO mode: 110uA	Stop mode: 0,8µA Low Speed-OCO mode: 110uA	Watch mode: 0,45µA/1.8V Subactive: 6µA/2V/32kHz Active: 1mA/2V/2MHz	Watch mode: 0,5µA/1.8V Subactive: 5µA/1.8V/32kHz Active: 1mA/1.8V/2MHz
Special Feature Highlights	I2C, SSI, UART, ADC, DAC Easy migration path to M16C,M32C,R32C	CAN, LIN, DTC 40MHz OCO Easy migration path to M16C,M32C,R32C	2,4kbps UART in sub- active mode (38,4kHz) ADC @ 32kHz Fast wake-up IrDA	Low power communication Low power measurement Fast wake-up IrDa LCD driver and charge pump 14bit ADC (H838086)
Starter Kit	RSKR8C1B	RSKR8C23, 25, 27 RSKR8C2D, 2F	RSKH836079 RSKH838099	RSKH836079 RSKH838099
Example Sensor Application	Dirt Sensors for White Goods		Gas Sensors Smoke Sensors	Glucose Meters Electricity Meters Gas Meters Water Meters

MCU proposals for intelligent sensors

Туре	H8SX/1622	SH7083	SH7125
Package	TLP145 9mmx9mm 0,65mm pitch	112pin BGA 10mmx10mm 0,8mm pitch	QFN52 7,2x7,2mm, 0,4mm pitch or QFN64 8mmx8mm, 0,4mm pitch
Performance	32bit CPU 50MHz Onchip MUL/DIV	32 bit RISC 104MIPS@80MHz	32 bit RISC FPU 200MFLOPS peak performance Double/Single precision Sinus: 680ns double precision
Low Power Modes	6 low power modes HW standby: 3uA Deep standby: 4uA Deep standby (keep RAM): 19uA	Deep standby: 5uA SW standby: 10mA	SW standby: 5mA
Special Feature Highlights	16bit ADC (6 ch) Power cut off Smart Card IF	Most powerful MCU in smallest package	Easy migration path up to 480DMIPS/4.2GFlops MPUs (e.g. SH7722 for multimedia applications)
Starter Kit	RSKH8SX1622	RSKSH7086 RSKSH7286	RSKSH7124
Example Sensor Application	Humidity Sensor Thermo Sensor	Cameras Motor Drives Compact Health Goods	Cameras Inverters Compact Health Goods

How to combine MCU and sensor

✓ Application Notes

- ✓ Connecting a pyroelectric infrared sensor to H8/300 Tiny series (rej06b0121.pdf)
- ✓ Connecting a semiconductor type accleeration sensor to H8/300 Tiny series (rej06b0129.pdf)
- ✓ Connecting a pressure sensor to H8/300 Tiny series (rej06b0130.pdf)
- ✓ Connecting gas sensor for detecting air contaminants to H8/300 SLP (rej06b0194.pdf)
- ✓ Connecting angular velocity sensor to H8/300 Tiny series (rej06b0221.pdf)
- ✓ Connecting an acceleration sensor to H8/300 SLP (rej06b0290.pdf)
- ✓ Connecting a pressure sensor to H8/300 SLP (rej06b0291.pdf)
- ✓ Sensor connection with low supply current using comparator and A/D converter (rej06b0644_h8300hslpap.pdf)
- ✓ Lux meter for M16C/26A (rej05b0811_m16cap.pdf)
- ✓ Sensor's output impedance under A-D conversion for M16C/62 (rej05b0278_m16cap.pdf)
- ✓ Detailed usage guidelines of ADC for H8/300 SLP (res0007_h8300slp.pdf)
- ✓ Ultrasonic range finder using H8/300 SLP (res0009_h8300slp.pdf)
- ✓ Direction finder using hall effect sensor with H8/300 SLP (res0010_h8300slp.pdf)
- ✓ Safety Software according to IEC60730 Class B (app22330.pdf)

ADC Considerations: Traditional Approaches

Layout Considerations

8

ADC accuracy optimization: Dithering

Add Noise Level of 1/2 LSB to signal Average over number of samples

(by Bob Maastra, Interstellar Research)

01/09/2008 ©2008. Renesas Technology Europe Ltd., All rights reserved. Everywhere you imagine RENESAS

1

©2008. Renesas Technology Europe Ltd., All rights reserved.

H8SX/1622 with full featured high precision ADC

H8SX/1622 with full featured high precision ADC

H8SX/1622 with full featured high precision ADC

Industrial Networks

12 02/09/2008

Industrial sensor networks: Industrial Ethernet

- Industrial Ethernet
 - Class A
 - Completely TCP/IP and UDP based
 - Ordinary ethernet Controller, Realtime handling by application layer
 - Candidates: Profinet, Modbus
 - Class B
 - Parallel channel for process data, TCP/IP timing controlled by process data driver
 - Ordinary Ethernet Controller
 - Candidates: Profinet-RT, Powerlink, Ethernet/IP
 - Class C
 - Parallel channel for process data, TCP/IP timing controlled by process data driver

RENESAS

H8S

- Special Realtime Ethernet Controller
- Candidates: Ethercat, Sercos, Profinet-IRT

- •176pin BGA, 13mmx13mm, 0,8mm pitch
- •512KB Flash, 40KB RAM
- •USB 2.0 Full Speed (480Mbps)
- •Ethernet MAC/PHY on chip
- •CRC (choice of 3 polynoms)
- •34MHz @ 3V operation
- •RSKH8S2472

echnoloav Group

EtherCA

Industrial sensor networks: CAN based

DeviceNet

- -Open Standard (Open DeviceNet Vendor Association)
- -Developed by Allen-Bradley / Rockwell Automation
- -Strong in USA and Asia
- -Based on CIP "Common Industrial Protocol" (same as Ethernet/IP)

•CANOpen

- -Developed by Bosch
- -Maintained by CiA (CAN in Automation)
- -European Standard (EN50325-4)
- -Strong in Europe

Renesas product selection	R8C/22,23	M16C/29	M16C/6N4,N5 M16C/6NLN, KM	M32C/87	R32C/117* R32C/118*	SH7286
CAN channels	1	1	Up to 2	Up to 2	Up to 3	1
On Chip Flash	64KB	128KB	256KB	1 <i>MB</i>	1 <i>MB</i>	1 <i>MB</i>
Pin	48	64~80	100	100~144	100~144	176
RSK	RSKR8C23	RSKM16C29	RSKM16C6NK	RSKM32C87	RSKR32C118*	RSK2SH7286*

Industrial sensor networks: 802.15.4 based

• WiHART

- Wireless Highway Addressable Remote Transducer
- developed 2007
- Based on 802.15.4 in ISM (2,4G band)
- DSSS, channel access by TDMA/CSMA
- down compatible to wired standard HART (developed 1980's)

• IEEE1451

- Smart Transducer Protocol
- Unified data format (TEDS format)
- Different standard cover different available protocols
 - » DOT 0: Basic format
 - » DOT 5: Bluetooth, ZigBee, WiFi, RFID, 6LowPAN, etc.
- Unified compiler and unified compliance testing
- Seemless internet addressing by gateway

• ISA100.11a

- Created by industry for process automation
- based on 802.15.4, ISM band (2,4GHz), time sync'd channel hopping
- NWL frame format compatible to 6LowPAN, easy gatewaying to TCP/IP world
- Can tunnel any protocol

Renesas product selection	RZB-CC16C-ZDK	Small IEEE 802.15.4 MAC
Description	<i>ZigBee Development Kit, 2,4GHz RF, M16C/2x MCU</i>	802.15.4 simple MAC Software

RUN-M: PLC/RF Hybrid protocol for metering

Apartment 1	RUN-M	RUN-M Tran	sport Layer	
		RUN-M Net	work Layer	
		Abstractio	on Layer	
Apartment 2	L	D2DL (Data Link)	802.15.4 LoPoMAC	
	PLC and RF PHY	IT800 PHY	802.15.4 PHY	
	Sender	eping Wake RX Wake R	X Wake RX Data	RX Sleeping
				1
Full seemless hybrid approach	802.15.4 enhancements	+ +	+ + +	
No gateway approach	for low power	Sleeping	RX ACK RX	ACK Sleeping
- · · · ·				

Renesas product selection	M16C/6S	RUN-M
Description	M16C CPU Built-In PLC modem based on extreme robust DCSK modulation	RUN-M Software Evaluation Version Full Version

Sleeping

RX

Sleeping

Rcv2

802.15.4 Device as Locating Sensor

Polytech'Clermont-Ferrand

Student Thesis by Mrs. Fanny Abrahamse, Poltech Clermont-Ferrand, France At Renesas Ratingen, Germany

LEDS

Push Buttons

(S1-S3)

Analog

17

Adjust (R44)

Summary

- Sensor networks for industrial applications have different requirements to sensor networks for consumer applications.
- System concept and component selection must be tuned to the specific sensor application.
- Expert knowhow is needed to achieve extreme low power consumption and high sensor resolution.
- Modern industrial sensor networks must be able to "wrap" a number of protocols and must offer a selection of PHY layers.
- Renesas offers microcontrollers, software and solutions for many \bullet industrial sensor network applications.

Renesas Technology Europe