

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Monocular Omnidirectional Vision Simulator for Robot Navigation

Panagiotis Palantas, George Palamas, Manolis Kavoussanos, George Papadourakis

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Why a 3D Robot Simulator ?

- Rapid prototyping of algorithms
- Simple basis for studying Situated Artificial Intelligence for autonomous agents
- Inexpensive, especially in multi-agent applications
- Adjustable environmental conditions
 - > Lighting
 - > Sensorial noise
- Faster and safer than a real robot

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Main Features

- Single or Multi-robot simulation
- 3D visualisation and sensing:
 - > Vision Sensors : Colour catadioptric camera
 - > Contact Sensors : bumpers
 - > Compass
- Extensions in Matlab:
 - > Visualization toolbox
 - > Image processing toolbox
 - > Neural Network toolbox

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Omnidirectional Camera

- Largest Field of View
 - > Landmarks always in the FOV except occasional occlusions
- Orientation Independency using statistical methods
 - > Histograms
 - > Distribution functions
- Increased reliability due to no rotation mechanism

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

System Architecture

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

XNA Game Studio

- A set of tools with a managed runtime environment
- Facilitates computer game development and management
- Provides support for both 2D and 3D application creation
- Supports all versions of Visual Studio 2005 or Visual C# 2005 Express
- Includes
 - > XNA Framework
 - > XNA Content Pipeline

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

What is XNA Framework

- Based on the .NET Framework 2.0
- Includes
 - > A rich set of class libraries for game development
 - > A content pipeline for importing content such as
 - 3D models
 - Textures
 - Sprites
 - > Build-in support for keyboard and mouse input
 - > Classes for audio and storage

But, no physics engine yet!

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Basic Scene Generation

- Load Models
- Apply Textures
- Position Robot at startup point
- Random or user specified positioning of obstacles inside the world
- Collision Detection for the correct placement of the obstacles

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Collision Detection

Use of boundary volumes

- > Bounding Box
 - Room and obstacles
- > Bounding Sphere
 - Robot
- Before each scene draw, checks for:
 - > Objects overlapping (Collision to obstacle)
 - > Objects containing (Collision to room)

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Sensori-Motor Coordination

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Environment Mapping

- Most used methods are:
 - > Sphere mapping
 - > Cube mapping
- We choose Cube Mapping
 - > Hardware supported by major graphic cards
 - > Create near realistic reflections
 - > Real-time creation of textures
 - > Viewpoint independency

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Environment Cube Mapping (1/2)

Reflection Procedure

- > Create the scene without the sphere
- > Change the projection matrix to 90 degrees FOV
- Place the camera at the center of the sphere position
- > Acquire six textures from top, bottom, left, right, front and behind

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Environment Cube Mapping (2/2)

Create the sphere

- Apply Cube Map to sphere
- Reposition our camera above the sphere

Cube Mapping

Cube map applied to sphere

Technological Educational Institute Of Crete Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Artificial World

- Custom made environment
- Simple 3D physics engine
- Selectable robot behavior
 - > Wall following
 - > Obstacle avoidance
 - > Random Walk

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Application: Way Finding

- An agent returns to a location that has visited before
 - > Agent tracks points of interest for every frame
 - Memorizes series of visual cues while exploration
 - Correlates current visual cues with previous memorized cues to aim homing

Unwarped Image

Department Of Applied Informatics and Multimedia

Intelligent Systems Laboratory

Future Work

- Support for more sensor types
 - > Proximity
 - infrared sensors
- Support for stereoscopic vision
- Different types of locomotion, like walking
- Evolutionary based optimization toolkit
- Reccurent Neural Networks toolkit